Applications of the Kleisli and Eilenberg-Moore 2-adjunctions
نویسندگان
چکیده
منابع مشابه
Exponential Kleisli Monoids as Eilenberg-Moore Algebras
Lax monoidal powerset-enriched monads yield a monoidal structure on the category of monoids in the Kleisli category of a monad. Exponentiable objects in this category are identified as those Kleisli monoids with algebraic structure. This result generalizes the classical identification of exponentiable topological spaces as those whose lattice of open subsets forms a continuous lattice.
متن کاملKleisli and Eilenberg-Moore Constructions as Parts of Biadjoint Situations
We consider monads over varying categories, and by defining the morphisms of Kleisli and of Eilenberg-Moore from a monad to another and the appropriate transformations (2-cells) between morphisms of Kleisli and between morphisms of Eilenberg-Moore, we obtain two 2-categories MndKl and MndEM. Then we prove that MndKl and MndEM are, respectively, 2-isomorphic to the conjugate of Kl and to the tra...
متن کاملON THE CAPACITY OF EILENBERG-MACLANE AND MOORE SPACES
K. Borsuk in 1979, at the Topological Conference in Moscow, introduced concept of the capacity of a compactum and asked some questions concerning properties of the capacity ofcompacta. In this paper, we give partial positive answers to three of these questions in some cases. In fact, by describing spaces homotopy dominated by Moore and Eilenberg-MacLane spaces, the capacities of a Moore space $...
متن کاملMorphological Adjunctions, Moore Family and Morphological Transforms
Mathematical Morphology arose in 1964 by the work of George Matheron and Jean Serra, who developed its main concepts and tools. It uses concepts from algebra and geometry. (Set theory, complete lattice theory, convexity etc,). The notion of adjunction is very fundamental in Mathematical Morphology. Morphological systems is a broad class of nonlinear signal operators that have found many applica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Categories and General Algebraic Structures with Application
سال: 2018
ISSN: 2345-5853,2345-5861
DOI: 10.29252/cgasa.10.1.117